Thyroid hormone and the D-type cyclins interact in regulating enterocyte gene transcription 41st Annual Meeting of the Society-for-Surgery-of-the-Alimentary-Tract Meng, S. F., Badrinarain, J., Sibley, E., Fang, R. X., Hodin, R. SPRINGER. 2001: 49–55

Abstract

Thyroid hormone (T3) is an important regulator of gut mucosal development and differentiation, inducing intestinal alkaline phosphatase (IAP) and repressing lactase gene transcription. In contrast, cyclin D1 (CD1) appears to be a growth promoter in the gut, functioning to maintain the undifferentiated state. The present studies were designed to examine the effects of CD1 on T3 action within intestinal epithelia. Caco-2 cells were maintained in hypothyroid medium and transiently transfected with either rat lactase (3.0 kb) or human IAP (2.4 kb) luciferase (Luc) reporter plasmids. Cotransfections were carried out using two T3 receptor (TR) isoforms, TR"-1 and TR$-1, as well as plasmids expressing CD1, CD3, CA, or CB1. Cells were then treated +/- 10 nmol/L T3 for 24 hours and luciferase activity was determined. With T3 treatment, IAP-Luc activity was induced (TR"-1 = eightfold, TR$-1 = ninefold), but these effects were dramatically inhibited (> 50%) by CD1 and CD3. In contrast, CA and CB1 did not alter T3-mediated IAP gene activation. The ability of CD1 and CD3 to inhibit T3 action was also tested in the context of the lactase gene, which is negatively regulated by T3. As expected, lactase reporter gene activity was repressed by T3 treatment in the case of both receptor isoforms, TR"-1 = 30% and TR$-1 = 40%. In contrast to its effects on the IAP gene, CD1 did not inhibit T3-mediated changes in lactase reporter gene activity. The D-type cyclins (CD1 and CD3), but not CA or CB1, specifically inhibit T3-mediated activation of the IAP gene. In contrast, the D-type cyclins do not inhibit T3-mediated repression of the lactase gene. These studies have identified a novel molecular interaction that exists between the pathways of growth and differentiation within intestinal epithelia.

View details for Web of Science ID 000167919800014

View details for PubMedID 11309648