Human Subthalamic Neuron Spiking Exhibits Subtle Responses to Sedatives ANESTHESIOLOGY MacIver, M. B., Bronte-Stewart, H. M., Henderson, J. M., Jaffe, R. A., Brock-Utne, J. G. 2011; 115 (2): 254-264


During deep brain stimulation implant surgery, microelectrode recordings are used to map the location of targeted neurons. The effects produced by propofol or remifentanil on discharge activity of subthalamic neurons were studied intraoperatively to determine whether they alter neuronal activity.Microelectrode recordings from 11 neurons, each from individual patients, were discriminated and analyzed before and after administration of either propofol or remifentanil. Subthalamic neurons in rat brain slices were recorded in patch-clamp to investigate cellular level effects.Neurons discharged at 42 ± 9 spikes/s (mean ± SD) and showed a common pattern of inhibition that lasted 4.3 ms. Unique discharge profiles were evident for each neuron, seen using joint-interval analysis. Propofol (intravenous bolus 0.3 mg/kg) produced sedation, with minor effects on discharge activity (less than 2.0% change in frequency). A prolongation of recurrent inhibition was evident from joint-interval analysis, and propofol's effect peaked within 2 min, with recovery evident at 10 min. Subthalamic neurons recorded in rat brain slices exhibited inhibitory synaptic currents that were prolonged by propofol (155%) but appeared to lack tonic inhibitory currents. Propofol did not alter membrane potential, membrane resistance, current-evoked discharge, or holding current during voltage clamp. Remifentanil (0.05 mg/kg) had little effect on overall subthalamic neuron discharge activity and did not prolong recurrent inhibition.These results help to characterize the circuit properties and feedback inhibition of subthalamic neurons and demonstrate that both propofol and remifentanil produce only minor alterations of subthalamic neuron discharge activity that should not interfere with deep brain stimulation implant surgery.

View details for PubMedID 21701380