Reducing artifacts in one-dimensional Fourier velocity encoding for fast and pulsatile flow MAGNETIC RESONANCE IN MEDICINE Lee, D., Santos, J. M., Hu, B. S., Pauly, J. M., Kerr, A. B. 2012; 68 (6): 1876-1885

Abstract

When evaluating the severity of valvular stenosis, the peak velocity of the blood flow is routinely used to estimate the transvalvular pressure gradient. One-dimensional Fourier velocity encoding effectively detects the peak velocity with an ungated time series of spatially resolved velocity spectra in real time. However, measurement accuracy can be degraded by the pulsatile and turbulent nature of stenotic flow and the existence of spatially varying off-resonance. In this work, we investigate the feasibility of improving the peak velocity detection capability of one-dimensional Fourier velocity encoding for stenotic flow using a novel echo-shifted interleaved readout combined with a variable-density circular k-space trajectory. The shorter echo and readout times of the echo-shifted interleaved acquisitions are designed to reduce sensitivity to off-resonance. Preliminary results from limited phantom and in vivo results also indicate that some artifacts from pulsatile flow appear to be suppressed when using this trajectory compared to conventional single-shot readouts, suggesting that peak velocity detection may be improved. The efficiency of the new trajectory improves the temporal and spatial resolutions. To realize the proposed readout, a novel multipoint-traversing algorithm is introduced for flexible and automated gradient-waveform design.

View details for DOI 10.1002/mrm.24212

View details for Web of Science ID 000311398600021

View details for PubMedID 22457248

View details for PubMedCentralID PMC3499673