New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Prognostic value of capnography during rest and exercise in patients with heart failure.
Prognostic value of capnography during rest and exercise in patients with heart failure. Congestive heart failure (Greenwich, Conn.) Arena, R., Guazzi, M., Myers, J., Chase, P., Bensimhon, D., Cahalin, L. P., Peberdy, M. A., Ashley, E., West, E., Forman, D. E. 2012; 18 (6): 302-307Abstract
New variables obtained from cardiopulmonary exercise testing (CPX) have received attention in recent years, in particular the partial pressure of end-tidal carbon dioxide (P(ET) CO(2) ). The purpose of this study was to therefore comprehensively assess the ability of resting and exercise P(ET) CO(2) to predict major cardiac events in a heart failure (HF) cohort referred for CPX. A total of 963 patients with systolic HF undergoing symptom-limited CPX were included in the analysis. Resting and exercise P(ET) CO(2) along with other CPX variables were determined, and patients were followed for major adverse events. With regard to resting measures, multivariate analysis revealed that left ventricular ejection fraction was the most robust prognostic marker (P<.001) while resting P(ET) CO(2) added significant predictive value and was retained in the regression (P<.001). When exercise data were considered, the multivariate analysis revealed that the P(ET) CO(2) apex during exercise added predictive value and was retained (P<.05). In what is the largest evaluation of P(ET) CO(2) in the assessment of systolic HF patients to date, the authors substantiate prior (smaller) studies showing prognostic utility of P(ET) CO(2) , both as a resting measure (an important potential screening tool) and during exercise. These data add to the rationale to incorporate P(ET) CO(2) as a routine monitoring component in HF management.
View details for DOI 10.1111/j.1751-7133.2012.00296.x
View details for PubMedID 22537025