Plasticity and Stability of the Visual System in Human Achiasma NEURON Hoffmann, M. B., Kaule, F. R., Levin, N., Masuda, Y., Kumar, A., Gottlob, I., Horiguchi, H., Dougherty, R. F., Stadler, J., Wolynski, B., Speck, O., Kanowski, M., Liao, Y. J., Wandell, B. A., Dumoulin, S. O. 2012; 75 (3): 393-401

Abstract

The absence of the optic chiasm is an extraordinary and extreme abnormality in the nervous system. The abnormality produces highly atypical functional responses in the cortex, including overlapping hemifield representations and bilateral population receptive fields in both striate and extrastriate visual cortex. Even in the presence of these large functional abnormalities, the effect on visual perception and daily life is not easily detected. Here, we demonstrate that in two achiasmic humans the gross topography of the geniculostriate and occipital callosal connections remains largely unaltered. We conclude that visual function is preserved by reorganization of intracortical connections instead of large-scale reorganizations of the visual cortex. Thus, developmental mechanisms of local wiring within cortical maps compensate for the improper gross wiring to preserve function in human achiasma.

View details for DOI 10.1016/j.neuron.2012.05.026

View details for Web of Science ID 000307417700007

View details for PubMedID 22884323

View details for PubMedCentralID PMC3427398