Subcutaneous Adipose Cell Size and Distribution: Relationship to Insulin Resistance and Body Fat OBESITY McLaughlin, T., Lamendola, C., Coghlan, N., Liu, T. C., Lerner, K., Sherman, A., Cushman, S. W. 2014; 22 (3): 673-680

Abstract

Metabolic heterogeneity among obese individuals may be attributable to differences in adipose cell size. We sought to clarify this by quantifying adipose cell size distribution, body fat, and insulin-mediated glucose uptake in overweight/moderately obese individuals. A total of 148 healthy nondiabetic subjects with BMI 25-38 kg/m(2) underwent subcutaneous adipose tissue biopsies and quantification of insulin-mediated glucose uptake with steady-state plasma glucose (SSPG) concentrations during the modified insulin suppression test. Cell size distributions were obtained with Beckman Coulter Multisizer. Primary endpoints included % small adipose cells and diameter of large adipose cells. Cell-size and metabolic parameters were compared by regression for the whole group, according to insulin-resistant (IR) and insulin-sensitive (IS) subgroups, and by body fat quintile. Both large and small adipose cells were present in nearly equal proportions. Percent small cells was associated with SSPG (r = 0.26, P = 0.003). Compared to BMI-matched IS individuals, IR counterparts demonstrated fewer, but many large adipose cells, and a greater proportion of small-to-large adipose cells. Diameter of the large adipose cells was associated with % body fat (r = 0.26, P = 0.014), female sex (r = 0.21, P = 0.036), and SSPG (r = 0.20, P = 0.012). In the highest versus lowest % body fat quintile, adipose cell size increased by only 7%, whereas adipose cell number increased by 74%. Recruitment of adipose cells is required for expansion of body fat mass beyond BMI of 25 kg/m(2) . Insulin resistance is associated with accumulation of small adipose cells and enlargement of large adipose cells. These data support the notion that impaired adipogenesis may underlie insulin resistance.

View details for DOI 10.1002/oby.20209

View details for Web of Science ID 000332224800011

View details for PubMedID 23666871