AFA-I, A CLONED AFIMBRIAL X-TYPE ADHESIN FROM A HUMAN PYELONEPHRITIC ESCHERICHIA-COLI STRAIN - PURIFICATION AND CHEMICAL, FUNCTIONAL AND SEROLOGIC CHARACTERIZATION EUROPEAN JOURNAL OF BIOCHEMISTRY Walz, W., Schmidt, M. A., LABIGNEROUSSEL, A. F., FALKOW, S., SCHOOLNIK, G. 1985; 152 (2): 315-321

Abstract

AFA-I, a mannose-resistant, P-independent, X-binding afimbrial Escherichia coli adhesin was purified from a recombinant strain and chemically, functionally and serologically characterized. AFA-I exists on the bacterial surface and free as a macromolecular aggregate in the supernatant of spent culture medium. It is composed of a single, repeating 16-kDa polypeptide subunit. The AFA-I protein amino acid composition is remarkable for the presence of 22% non-polar hydrophobic residues and 2.5-3.0 cysteines per subunit. Since AFA-I travels as a monomer in sodium dodecyl sulfate/polyacrylamide gel electrophoresis under non-reducing conditions, no disulfide bonds exist between subunits and at least one free sulfhydryl per subunit is available. The AFA-I N-terminal amino acid sequence residues 1-24 was unrelated to E. coli fimbrial sequences; however, the N-terminus of AFA-I and GV-12, another E. coli afimbrial protein, was asparagine. HB101 (pIL 14), the AFA-I recombinant strain, agglutinated only human and gorilla erythrocytes, indicating a preference for receptor molecules on the red cells of man and the anthropoid apes. AFA-I did not bind glycophorin A or sialyl glycosides and is therefore distinct from the E. coli X-binding adhesins with M and S specificity. The AFA-I receptor was found to be abundant and diffusely distributed on HeLa tissue culture monolayer cell surfaces by indirect fluorescent microscopy. Anti-AFA-I sera bound AFA-I in Western blots of 4 out of 16 X-binding E. coli urine isolates. They did not bind MS or P pili. AFA-I may be exemplary of an adhesin class significant for the pathogenesis of human urinary tract infections.

View details for Web of Science ID A1985ASZ0300012

View details for PubMedID 2865133