Two-step transcriptional amplification as a method for imaging reporter gene expression using weak promoters PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Iyer, M., Wu, L., Carey, M., Wang, Y., Smallwood, A., Gambhir, S. S. 2001; 98 (25): 14595-14600

Abstract

We are developing assays to image tissue-specific reporter gene expression in living mice by using optical methods and positron emission tomography. Approaches for imaging reporter gene expression depend on robust levels of mRNA and reporter protein. Attempts to image reporter gene expression driven by weak promoters are often hampered by the poor transcriptional activity of such promoters. Most tissue-specific promoters are weak relative to stronger but constitutively expressing viral promoters. In this study, we have validated methods to enhance the transcriptional activity of the prostate-specific antigen promoter for imaging by using a two-step transcriptional amplification (TSTA) system. We used the TSTA system to amplify expression of firefly luciferase (fl) and mutant herpes simplex virus type 1 thymidine kinase (HSV1-sr39tk) in a prostate cancer cell line (LNCaP). We demonstrate approximately 50-fold (fl) and approximately 12-fold (HSV1-sr39tk) enhancement by using the two-step approach. The TSTA system is observed to retain tissue selectivity. A cooled charge-coupled device optical imaging system was used to visualize the amplified fl expression in living mice implanted with LNCaP cells transfected ex vivo. These imaging experiments reveal a approximately 5-fold gain in imaging signal by using the TSTA system over the one-step system. The TSTA approach will be a valuable and generalizable tool to amplify and noninvasively image reporter gene expression in living animals by using tissue-specific promoters. The approaches validated should have important implications for study of gene therapy vectors, cell trafficking, transgenic models, as well as studying development of eukaryotic organisms.

View details for Web of Science ID 000172576900074

View details for PubMedID 11734653