ANALYSIS OF HSF-1 PHOSPHORYLATION IN A549 CELLS TREATED WITH A VARIETY OF STRESSES INTERNATIONAL JOURNAL OF HYPERTHERMIA Mivechi, N. F., Koong, A. C., Giaccia, A. J., Hahn, G. M. 1994; 10 (3): 371-379

Abstract

In the absence of stress, heat shock transcription factor-1 (HSF-1) exists as a monomer. After the treatment of cells with variety of stresses, HSF-1 forms a trimer and binds to the heat shock element (HSE), a motif consisting of three consecutive NGAAN sequences located in an inverted orientation upstream of the heat shock genes. HSF-1 is then phosphorylated causing transactivation of heat shock mRNAs. Treatment of cells with some of the stresses has been shown to increase HSF binding to HSE without detectably increasing the synthesis of heat shock mRNAs. Here we used antibody specific to HSF-1 to detect its phosphorylation status following exposure of A549, a human lung carcinoma cell line to a variety of stresses in order to correlate HSF-1 phosphorylation with its transactivation ability. Our studies show that HSF-1 is phosphorylated following heat shock (43 degrees C for 1 h), hypoxia (5 h exposure to 0.02% oxygen), 8% ethanol (1 h exposure at 37 degrees C), or 200 microM sodium arsenite (1 h exposure at 37 degrees C). All such stresses have previously been shown to increase the synthesis of heat shock proteins (hsps). However, there are no detectable increases in HSF-1 phosphorylation after the treatment of cells with X-irradiation (2-8 Gy) or 100 microM canavanine, an amino acid analogue (1 h exposure at 37 degrees C). Treatment of cells with X-irradiation increases HSF binding to HSE without increasing the synthesis of hsps, while treatment of cells with canavanine has been shown to increase the synthesis of hsps.(ABSTRACT TRUNCATED AT 250 WORDS)

View details for Web of Science ID A1994NP47600009

View details for PubMedID 7930803