Analysis of cell death in myeloid cells inducibly expressing the cell cycle protein p55Cdc EXPERIMENTAL HEMATOLOGY Lin, M., Mendoza, M., Kane, L., WEINSTEIN, J., Sakamoto, K. M. 1998; 26 (10): 1000-1006

Abstract

p55Cdc, a cell cycle protein is expressed in cycling mammalian cells and is required for normal cell division. Expression of this protein is regulated during the cell cycle, peaking in late G1 and S. We have previously shown that constitutive expression of p55Cdc results in inhibition of granulocyte differentiation. Degradation of p55Cdc is also required for apoptosis in growth factor and serum starved cells. In the present study we prepared stably transfected cells conditionally expressing p55Cdc in response to zinc stimulation to investigate the role of inducible p55Cdc expression in apoptosis of myeloid cells. We report that inducible expression of p55Cdc in the myeloid leukemic cell line 32Dc13 resulted in increased cell death. p55Cdc overexpression led to a statistically significant decrease in the viability of 32Dc13 cells compared with that of control cells. Furthermore, cell staining and flow cytometry analysis revealed that p55Cdc-overexpressing 32Dc13 cells progressed to apoptosis much earlier than uninduced cells. These results suggest that inducible expression of p55Cdc leads to earlier increases in cell death in the absence of growth factor and serum in myeloid leukemic cells.

View details for Web of Science ID 000075653600011

View details for PubMedID 9728936