Continuous assessment of perfusion by tagging including volume and water extraction (CAPTIVE): A steady-state contrast agent technique for measuring blood flow, relative blood volume fraction, and the water extraction fraction MAGNETIC RESONANCE IN MEDICINE Zaharchuk, G., Bogdanov, A. A., Marota, J. J., Shimizu-Sasamata, M., Weisskoff, R. M., Kwong, K. K., Jenkins, B. G., Weissleder, R., Rosen, B. R. 1998; 40 (5): 666-678

Abstract

A new technique, CAPTIVE, that is a synthesis of arterial spin labeling (ASL) blood flow and steady-state susceptibility contrast relative blood volume imaging is described. Using a single injection of a novel, long half-life intravascular magnetopharmaceutical with a high tissue:blood susceptibility difference (deltachi) to deltaR1 ratio, changes in tissue transverse relaxivity (deltaR2 or deltaR2*) that arise from changes in blood volume were measured, while preserving the ability to measure blood flow using traditional T1-based ASL techniques. This modification permits the continuous measurement of both blood flow and blood volume. Also, because the contrast agent can be used to remove the signal from intravascular spins, it is possible to measure the first-pass water extraction fraction. Contrast-to-noise is easily traded off with repetition rate, allowing the use of non-EPI scanners and more flexible imaging paradigms. The basic theory of these measurements, several experimental scenarios, and validating results are presented. Specifically, the PaCO2-reactivity of microvascular and total relative cerebral blood volume (rCBV), cerebral blood flow (CBF), and the water extraction-flow product (EF) in rats with the new contrast agent MPEG-PL-DyDTPA is measured, and the values are concordant with those of previous literature. As an example of one possible application, continuous flow and volume measurements during transient focal ischemia are presented. It is believed that CAPTIVE imaging will yield a more complete picture of the hemodynamic state of an organ, and has further application for understanding the origins of the BOLD effect.

View details for Web of Science ID 000076496700003

View details for PubMedID 9797148