Enhanced ERK-1/2 activation in mice susceptible to coxsackievirus-induced myocarditis JOURNAL OF CLINICAL INVESTIGATION Opavsky, M. A., Martino, T., RABINOVITCH, M., Penninger, J., Richardson, C., Petric, M., Trinidad, C., Butcher, L., Chan, J., Liu, P. P. 2002; 109 (12): 1561-1569

Abstract

Group B coxsackieviral (CVB) infection commonly causes viral myocarditis. Mice are protected from CVB3 myocarditis by gene-targeted knockout of p56(Lck)(Lck), the Src family kinase (Src) essential for T cell activation. Extracellular signal-regulated kinase 1 and 2 (ERK-1/2) can influence cell function downstream of Lck. Using T cell lines and neonatal cardiac myocytes we investigated the role of ERK-1/2 in CVB3 infection. In Jurkat T cells ERK-1/2 is rapidly activated by CVB3; but, this response is absent in Lck-negative JCaM T cells. Inhibition of ERK-1/2 with UO126 reduced CVB3 titers in Jurkat cells, but not in JCaM cells. In cardiac myocytes CVB3 activation of ERK-1/2 is blocked by the Src inhibitor PP2. In addition, viral production in myocytes is decreased by Src or ERK-1/2 inhibition. In vitro, in both immune and myocardial cells, ERK-1/2 is activated by CVB3 downstream of Lck and other Src's and is necessary for efficient CVB3 replication. In vivo, following CVB3 infection, ERK-1/2 activation is evident in the myocardium. ERK-1/2 activation is intense in the hearts of myocarditis-susceptible A/J mice. In contrast, significantly less ERK-1/2 activation is found in the hearts of myocarditis-resistant C57BL/6 mice. Therefore, the ERK-1/2 response to CVB3 infection may contribute to differential host susceptibility to viral myocarditis.

View details for DOI 10.1172/JCI200213971

View details for Web of Science ID 000176318600009

View details for PubMedID 12070303