New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Effects of mild hypothermia on superoxide anion production, superoxide dismutase expression, and activity following transient focal cerebral ischemia
Effects of mild hypothermia on superoxide anion production, superoxide dismutase expression, and activity following transient focal cerebral ischemia NEUROBIOLOGY OF DISEASE Maier, C. M., Sun, G. H., Cheng, D. Y., Yenari, M. A., Chan, P. H., Steinberg, G. K. 2002; 11 (1): 28-42Abstract
Following a transient ischemic insult there is a marked increase in free radical (FR) production within the first 10-15 min of reperfusion and again at the peak of the inflammatory process. Hypothermia decreases lipid peroxidation following global ischemia, raising the possibility that it may act by reducing FR production early on and by maintaining or increasing endogenous antioxidant systems. By means of FR fluorescence, Western blot, immunohistochemistry, and enzymatic assay, we studied the effects of mild hypothermia on superoxide (O(-*)(2)) anion production, superoxide dismutase SOD expression, and activity following focal cerebral ischemia in rats. Mild hypothermia significantly reduced O(-*)(2) generation in the ischemic penumbra and corresponding contralateral region, but did not alter the bilateral SOD expression. SOD enzymatic activity in the ischemic core was slightly reduced in hypothermia-treated animals compared with normothermic controls. Our results suggest that the neuroprotective effect of mild hypothermia may be due, in part, to a reduction in neuronal and endothelial O(-*)(2) production during early reperfusion.
View details for DOI 10.1006/nbdi.2002.0513
View details for Web of Science ID 000179314100003
View details for PubMedID 12460544