Aortoiliac and renal arteries: Prospective intraindividual comparison of contrast-enhanced three-dimensional MR angiography and multi-detector row CT angiography RADIOLOGY Willmann, J. K., Wildermuth, S., Pfammatter, T., Roos, J. E., Seifert, B., Hilfiker, P. R., Marincek, B., Weishaupt, D. 2003; 226 (3): 798-811

Abstract

To compare contrast material-enhanced three-dimensional (3D) magnetic resonance (MR) angiography and multi-detector row computed tomographic (CT) angiography in the same patients for assessment of the aortoiliac and renal arteries, with digital subtraction angiography (DSA) as the standard of reference.DSA, 3D MR angiography, and multi-detector row CT angiography were performed in 46 consecutive patients. A total of 769 arterial segments were analyzed for arterial stenosis by using a four-point grading system. Aneurysmal changes were noted. The time required for performing 3D reconstructions and image analysis of both MR and CT data sets was measured. Patient acceptance for each modality was assessed with a visual analogue scale. Statistical analysis of data was performed.Sensitivity of MR angiography for detection of hemodynamically significant arterial stenosis was 92% for reader 1 and 93% for reader 2, and specificity was 100% and 99%, respectively. Sensitivity of CT angiography was 91% for reader 1 and 92% for reader 2, and specificity was 99% and 99%, respectively. Differences between the two modalities were not significant. Interobserver and intermodality agreement was excellent (kappa = 0.88-0.90). The time for performance of 3D reconstruction and image analysis of CT data sets was significantly longer than that for MR data sets (P <.001). Patient acceptance was best for CT angiography (P =.016).There is no statistically significant difference between 3D MR angiography and multi-detector row CT angiography in the detection of hemodynamically significant arterial stenosis of the aortoiliac and renal arteries.

View details for Web of Science ID 000181220200025

View details for PubMedID 12601190