A Genome-Wide Association Study (GWAS) for Bronchopulmonary Dysplasia PEDIATRICS Wang, H., St Julien, K. R., Stevenson, D. K., Hoffmann, T. J., Witte, J. S., Lazzeroni, L. C., Krasnow, M. A., Quaintance, C. C., Oehlert, J. W., Jelliffe-Pawlowski, L. L., Gould, J. B., Shaw, G. M., O'Brodovich, H. M. 2013; 132 (2): 290-297

Abstract

Twin studies suggest that heritability of moderate-severe bronchopulmonary dysplasia (BPD) is 53% to 79%, we conducted a genome-wide association study (GWAS) to identify genetic variants associated with the risk for BPD.The discovery GWAS was completed on 1726 very low birth weight infants (gestational age = 25(0)-29(6/7) weeks) who had a minimum of 3 days of intermittent positive pressure ventilation and were in the hospital at 36 weeks' postmenstrual age. At 36 weeks' postmenstrual age, moderate-severe BPD cases (n = 899) were defined as requiring continuous supplemental oxygen, whereas controls (n = 827) inhaled room air. An additional 795 comparable infants (371 cases, 424 controls) were a replication population. Genomic DNA from case and control newborn screening bloodspots was used for the GWAS. The replication study interrogated single-nucleotide polymorphisms (SNPs) identified in the discovery GWAS and those within the HumanExome beadchip.Genotyping using genomic DNA was successful. We did not identify SNPs associated with BPD at the genome-wide significance level (5 × 10(-8)) and no SNP identified in previous studies reached statistical significance (Bonferroni-corrected P value threshold .0018). Pathway analyses were not informative.We did not identify genomic loci or pathways that account for the previously described heritability for BPD. Potential explanations include causal mutations that are genetic variants and were not assayed or are mapped to many distributed loci, inadequate sample size, race ethnicity of our study population, or case-control differences investigated are not attributable to underlying common genetic variation.

View details for DOI 10.1542/peds.2013-0533

View details for Web of Science ID 000322957300052