Adenovirus-mediated transmission of a dominant negative transforming growth factor-beta receptor inhibits in vitro mouse cranial suture fusion PLASTIC AND RECONSTRUCTIVE SURGERY Mehrara, B. J., Spector, J. A., Greenwald, J. A., Ueno, H., Longaker, M. T. 2002; 110 (2): 506-514

Abstract

Recent studies have implicated the transforming growth factor (TGF)-beta family in the regulation of pathological sporadic cranial suture fusion. In addition, these studies have shown that TGF-beta is highly expressed by the dura mater underlying fusing murine cranial sutures. The purpose of the present experiments was to analyze the effects of disrupting TGF-beta signaling during programmed mouse cranial suture fusion. Using recombinant DNA technology, a replication-deficient adenovirus encoding a defective TGF-beta receptor (Ad.DN-TbetaRII) capable of blocking TGF-beta biological activity was constructed. Mouse posterior frontal sutures were harvested before the initiation of suture fusion (postnatal day 25), and the dura mater underlying the suture was infected with vehicle, Ad.DN-TbetaRII, or control virus (Ad.LacZ; n = 10 each). Sutures were cultured for 14 or 30 days in an organ culture system and analyzed macroscopically and histologically.X-gal staining of Ad.LacZ-infected sutures 14 days after culture revealed strong staining of cells localized to the dura mater. Macroscopic analysis revealed complete sutural fusion in vehicle and Ad.LacZ-infected sutures. In contrast, Ad.DN-TBRII-infected sutures demonstrated nearly complete patency. Histological analysis confirmed our macroscopic observations with sutural fusion in 81.3 +/- 10 percent and 74.5 +/- 9 percent of vehicle and Ad.LacZ-infected sutures, respectively, versus 38.1 +/- 12 percent (p < 0.001) in Ad.DN-TbetaRII-infected sutures. In addition, transfection with the Ad.DN-TbetaRII virus resulted in a significant attenuation of anterior-to-posterior suture fusion, with the majority of fused sections localized to anterior sections. These data strongly implicate TGF-beta biological activity in the dura mater underlying the posterior frontal suture in the regulation of programmed sutural fusion. In addition, this study demonstrates the utility of adenovirus-mediated gene transfer in preventing programmed sutural fusion.

View details for Web of Science ID 000177043900022

View details for PubMedID 12142669