Deletion of the beta 2-adrenergic receptor prevents the development of cardiomyopathy in mice JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY Fajardo, G., Zhao, M., Urashima, T., Farahani, S., Hu, D., Reddy, S., Bernstein, D. 2013; 63: 155-164

Abstract

Beta adrenergic receptor (ß-AR) subtypes act through diverse signaling cascades to modulate cardiac function and remodeling. Previous in vitro studies suggest that ß1-AR signaling is cardiotoxic whereas ß2-AR signaling is cardioprotective, and may be the case during ischemia/reperfusion in vivo. The objective of this study was to assess whether ß2-ARs also play a cardioprotective role in the pathogenesis of non-ischemic forms of cardiomyopathy. To dissect the role of ß1 vs ß2-ARs in modulating MLP (Muscle LIM Protein) cardiomyopathy, we crossbred MLP-/- with ß1-/- or ß2-/- mice. Deletion of the ß2-AR improved survival, cardiac function, exercise capacity and myocyte shortening; by contrast haploinsufficency of the ß1-AR reduced survival. Pathologic changes in Ca(2+) handling were reversed in the absence of ß2-ARs: peak Ca(2+) and SR Ca(2+) were decreased in MLP-/- and ß1+/-/MLP-/- but restored in ß2-/-MLP-/-. These changes were associated with reversal of alterations in troponin I and phospholamban phosphorylation. Gi inhibition increased peak and baseline Ca(2+), recapitulating changes observed in the ß2-/-/MLP-/-. The L-type Ca(2+) blocker verapamil significantly decreased cardiac function in ß2-/-MLP-/- vs WT. We next tested if the protective effects of ß2-AR ablation were unique to the MLP model using TAC-induced heart failure. Similar to MLP, ß2-/- mice demonstrated delayed progression of heart failure with restoration of myocyte shortening and peak Ca(2+) and Ca(2+) release. Deletion of ß2-ARs prevents the development of MLP-/- cardiomyopathy via positive modulation of Ca(2+) due to removal of inhibitory Gi signaling and increased phosphorylation of troponin I and phospholamban. Similar effects were seen after TAC. Unlike previous models where ß2-ARs were found to be cardioprotective, in these two models, ß2-AR signaling appears to be deleterious, potentially through negative regulation of Ca(2+) dynamics.

View details for DOI 10.1016/j.yjmcc.2013.07.016

View details for Web of Science ID 000325387300017

View details for PubMedID 23920331

View details for PubMedCentralID PMC3791213