A novel chromosomal locus of enteropathogenic Escherichia coli (EPEC), which encodes a bfpT-regulated chaperone-like protein, TrcA, involved in microcolony formation by EPEC MOLECULAR MICROBIOLOGY Tobe, T., Tatsuno, I., Katayama, E., Wu, C. Y., SCHOOLNIK, G. K., Sasakawa, C. 1999; 33 (4): 741-752

Abstract

The bfpTVW operon, also known as the per operon, of enteropathogenic Escherichia coli (EPEC) is required for the transcriptional activation of the bfp operon, which encodes the major subunit and assembly machinery of bundle-forming pili (BFP). An immobilized T7-tagged BfpT fusion protein that binds specifically to upstream promoter sequences of bfpA and eae was used to 'fish out' from a promoter library other EPEC chromosomal fragments that are bound by the BfpT protein. After screening for promoters exhibiting bfpTVW-dependent expression, one was identified that was positively regulated by bfpTVW and that is not present in the chromosomes of two non-virulent E. coli laboratory strains, DH5alpha and HB101. Further analysis of this positively regulated promoter in EPEC showed that it resided within a 4.9 kb sequence that is not present in E. coli K12. This locus, located downstream of the potB gene, was found to contain four open reading frames (ORFs): bfpTVW-activated promoter was localized upstream of ORF1. An ORF1 knockout mutant produced less of the BFP structural subunit (BfpA) and formed smaller than normal adherent microcolonies on cultured epithelial cells; however, this mutation did not affect bfp transcription. An ORF1-His6 fusion protein specifically bound the preprocessed and mature forms of the BfpA protein and thus appears to stabilize the former within the cytoplasmic compartment. ORF1 therefore is a newly isolated EPEC chromosomal gene that encodes a chaperone-like protein involved in the production of BFP. Hence, ORF1 was designated trcA (bfpT-regulated chaperone-like protein gene). The TrcA protein also specifically bound 39 kDa and 90 kDa proteins that are expressed by EPEC but not by E. coli K12. The 90 kDa protein was revealed to be intimin, a protein product of the eae gene, which is required for the EPEC attaching/effacing phenotype, suggesting a direct interaction of TrcA with intimin in the cytoplasmic compartment.

View details for Web of Science ID 000082478000008

View details for PubMedID 10447884