Roles of Ca2+ and protein tyrosine kinase in insulin action on cell volume via Na+ and K+ channels and Na+/K+/2Cl(-) cotransporter in fetal rat alveolar type II pneumocyte JOURNAL OF MEMBRANE BIOLOGY Marunaka, Y., Niisato, N., O'Brodovich, H., Post, M., Tanswell, A. K. 1999; 168 (1): 91-101

Abstract

The aim of the present study was to investigate the roles of Ca2+ and protein tyrosine kinase (PTK) in the insulin action on cell volume in fetal rat (20-day gestational age) type II pneumocytes. Insulin (100 nm) increased cell volume in the presence of extracellular Ca2+ (1 mm), while cell shrinkage was induced by insulin in the absence of extracellular Ca2+ (<1 nm). This insulin action in a Ca2+-containing solution was completely blocked by co-application of bumetanide (50 microm, an inhibitor of Na+/K+/2Cl- cotransporter) and amiloride (10 microm, an inhibitor of epithelial Na+ channel), but not by the individual application of either bumetanide or amiloride. On the other hand, the insulin action on cell volume in a Ca2+-free solution was completely blocked by quinine (1 mm, a blocker of Ca2+-activated K+ channel), but not by bumetanide and/or amiloride. These observations suggest that insulin activates an amiloride-sensitive Na+ channel and a bumetanide-sensitive Na+/K+/2Cl- cotransporter in the presence of 1 mm extracellular Ca2+, that the stimulatory action of insulin on an amiloride-sensitive Na+ channel and a bumetanide-sensitive Na+/K+/2Cl- cotransporter requires Ca2+, and that in a Ca2+-free solution insulin activates a quinine-sensitive K+ channel but not in the presence of 1 mm Ca2+. The insulin action on cell volume in a Ca2+-free solution was almost completely blocked by treatment with BAPTA (10 microm) or thapsigargin (1 microM, an inhibitor of Ca2+-ATPase which depletes the intracellular Ca2+ pool). Further, lavendustin A (10 microm, an inhibitor of receptor type PTK) blocked the insulin action in a Ca2+-free solution. These observations suggest that the stimulatory action of insulin on a quinine-sensitive K+ channel is mediated through PTK activity in a cytosolic Ca2+-dependent manner. Lavendustin A, further, completely blocked the activity of the Na+/K+/2Cl- cotransporter in a Ca2+-free solution, but only partially blocked the activity of the Na+/K+/2Cl- cotransporter in the presence of 1 mm Ca2+. This observation suggests that the activity of the Na+/K+/2Cl- cotransporter is maintained through two different pathways; one is a PTK-dependent, Ca2+-independent pathway and the other is a PTK-independent, Ca2+-dependent pathway. Further, we observed that removal of extracellular Ca2+ caused cell shrinkage by diminishing the activity of the amiloride-sensitive Na+ channel and the bumetanide-sensitive Na+/K+/2Cl- cotransporter, and that removal of extracellular Ca2+ abolished the activity of the quinine-sensitive K+ channel. We conclude that the cell shrinkage induced by removal of extracellular Ca2+ results from diverse effects on the cotransporter and Na+ and K+ channels.

View details for Web of Science ID 000078969000009

View details for PubMedID 10051692