ROLE OF ATP-SENSITIVE POTASSIUM CHANNELS IN OVINE FETAL PULMONARY VASCULAR TONE AMERICAN JOURNAL OF PHYSIOLOGY Cornfield, D. N., MCQUESTON, J. A., McMurtry, I. F., Rodman, D. M., Abman, S. H. 1992; 263 (5): H1363-H1368

Abstract

To study the potential role of ATP-sensitive K+ (K+ATP) channels in fetal pulmonary vasoregulation, we studied the effect of a K+ATP channel agonist, lemakalim, and antagonist, glibenclamide, on the fetal pulmonary circulation in nine chronically instrumented late-gestation fetal lambs. Left pulmonary artery (LPA) blood flow was measured with an electromagnetic flow transducer. Brief (10 min) infusions of lemakalim at 3, 10, and 30 micrograms/min into the LPA produced dose-dependent increases in flow from 68 +/- 7 to 96 +/- 11, 160 +/- 15, and 204 +/- 34 ml/min, respectively. The duration of pulmonary vasodilation after the 10-min infusions of lemakalim at 3, 10, and 30 micrograms/min was 20 +/- 3, 47 +/- 10, and 55 +/- 15 min, respectively. Pulmonary blood pressure and flow did not change with intrapulmonary infusion of glibenclamide (10 mg), a K+ATP channel antagonist. Lemakalim-induced pulmonary vasodilation was not affected by nitro-L-arginine (10 mg), a competitive inhibitor of endothelium-dependent relaxing factor, but was blocked by glibenclamide. Prolonged (2 h) intrapulmonary infusions of lemakalim (2-6 micrograms/min) increased pulmonary blood flow by 137%. The increase in pulmonary blood flow was sustained throughout the infusion. Systemic and pulmonary arterial pressures decreased during prolonged infusion. We conclude that K+ATP channels are present in the fetal pulmonary circulation, but do not participate in the regulation of basal pulmonary vascular tone. K+ATP channel activation produces sustained vasodilation that is not mediated by endothelium-derived relaxing factor. We speculate that birth-related stimuli activate K+ATP channels to enhance the pulmonary vasodilation that occurs at birth.

View details for Web of Science ID A1992JZ77900005

View details for PubMedID 1443190