New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Re-Engineered Stromal Cell-Derived Factor-1 alpha and the Future of Translatable Angiogenic Polypeptide Design
Re-Engineered Stromal Cell-Derived Factor-1 alpha and the Future of Translatable Angiogenic Polypeptide Design TRENDS IN CARDIOVASCULAR MEDICINE Hiesinger, W., Goldstone, A. B., Woo, Y. J. 2012; 22 (6): 139-144Abstract
Smaller engineered analogs of angiogenic cytokines may provide translational advantages, including enhanced stability and function, ease of synthesis, lower cost, and, most important, the potential for modulated delivery via engineered biomaterials. In order to create such a peptide, computational molecular modeling and design was employed to engineer a minimized, highly efficient polypeptide analog of the stromal cell-derived factor-1a (SDF) molecule. After removal of the large, central ß-sheet region, a designed diproline linker connected the native N-terminus (responsible for receptor activation and binding) and C-terminus (responsible for extracellular stabilization). This yielded energetic and conformational advantages resulting in a small, low-molecular-weight engineered SDF polypeptide analog (ESA) that was shown to have angiogenic activity comparable to or better than that of recombinant human SDF both in vitro and in a murine model of ischemic heart failure.
View details for Web of Science ID 000311065900001
View details for PubMedID 22902182