Development of a job-exposure matrix for exposure to total and fine particulate matter in the aluminum industry JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY Noth, E. M., Dixon-Ernst, C., Liu, S., Cantley, L., Tessier-Sherman, B., Eisen, E. A., Cullen, M. R., Hammond, S. K. 2014; 24 (1): 89-99

Abstract

Increasing evidence indicates that exposure to particulate matter (PM) at environmental concentrations increases the risk of cardiovascular disease, particularly PM with an aerodynamic diameter of less than 2.5?µm (PM(2.5)). Despite this, the health impacts of higher occupational exposures to PM(2.5) have rarely been evaluated. In part, this research gap derives from the absence of information on PM(2.5) exposures in the workplace. To address this gap, we have developed a job-exposure matrix (JEM) to estimate exposure to two size fractions of PM in the aluminum industry. Measurements of total PM (TPM) and PM(2.5) were used to develop exposure metrics for an epidemiologic study. TPM exposures for distinct exposure groups (DEGs) in the JEM were calculated using 8385 personal TPM samples collected at 11 facilities (1980-2011). For eight of these facilities, simultaneous PM(2.5) and TPM personal monitoring was conducted from 2010 to 2011 to determine the percent of TPM that is composed of PM(2.5) (%PM(2.5)) in each DEG. The mean TPM from the JEM was then multiplied by %PM(2.5) to calculate PM(2.5) exposure concentrations in each DEG. Exposures in the smelters were substantially higher than in fabrication units; mean TPM concentrations in smelters and fabrication facilities were 3.86 and 0.76?mg/m(3), and the corresponding mean PM(2.5) concentrations were 2.03 and 0.40?mg/m(3). Observed occupational exposures in this study generally exceeded environmental PM(2.5) concentrations by an order of magnitude.

View details for DOI 10.1038/jes.2013.53

View details for Web of Science ID 000328604900013

View details for PubMedID 24022670