Parallel rarebits: A novel, large-scale visual field screening method CLINICAL AND EXPERIMENTAL OPTOMETRY Lin, S. R., Fijalkowski, N., Lin, B. R., Li, F., Singh, K., Chang, R. T. 2014; 97 (6): 528-533

Abstract

Rarebit perimetry (RBP) is a computer-based perimetric testing program with sensitivity and specificity for detection of visual field defects comparable to traditional automated perimetry. To make large-scale screening more efficient, we developed a parallel rarebit perimetric method to screen groups of subjects simultaneously. We then used this method to report the mean hit rate (MHR) among subjects aged 13 to 19 years.Rarebit perimetry was installed on computers in an existing school computer laboratory. All subjects provided medical and demographic information and underwent a basic visual examination. Testing instructions were provided to groups of up to 35 subjects and rarebit perimetry was subsequently administered. Two or three test supervisors answered questions and ensured that subjects were well aligned with their test screens. Mean hit rate, reaction times, error rates and testing time were calculated, and time estimates for rarebit, frequency doubling perimetry and Humphrey 24-2 Swedish Interactive Thresholding Algorithm (SITA) fast test were compared.A total of 364 rarebit perimetric tests were conducted on 182 subjects. Of these, 154 subjects met our inclusion criteria for the reference range (three testing errors or less and visual acuity 6/9 or better). The average mean hit rate was 94.3 ± 4.63 per cent. Screening of 500 subjects using this parallel rarebit perimetric method would require approximately nine hours, which is far less than an estimated 77 hours required for frequency doubling perimetry C-20 screening tests or an estimated 127 hours required for Humphrey 24-2 SITA fast tests.Using our methods, rarebit perimetry can be administered in parallel to groups of subjects. The mean hit rate was comparable to that reported in previously published studies. This parallel technique may improve the efficiency of large-scale visual field screenings.

View details for DOI 10.1111/cxo.12221

View details for Web of Science ID 000344172900008