New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Modeling Cardiovascular Diseases with Patient-Specific Human Pluripotent Stem Cell-Derived Cardiomyocytes.
Modeling Cardiovascular Diseases with Patient-Specific Human Pluripotent Stem Cell-Derived Cardiomyocytes. Methods in molecular biology (Clifton, N.J.) Burridge, P. W., Diecke, S., Matsa, E., Sharma, A., Wu, H., Wu, J. C. 2016; 1353: 119-130Abstract
The generation of cardiomyocytes from human induced pluripotent stem cells (hiPSCs) provides a source of cells that accurately recapitulate the human cardiac pathophysiology. The application of these cells allows for modeling of cardiovascular diseases, providing a novel understanding of human disease mechanisms and assessment of therapies. Here, we describe a stepwise protocol developed in our laboratory for the generation of hiPSCs from patients with a specific disease phenotype, long-term hiPSC culture and cryopreservation, differentiation of hiPSCs to cardiomyocytes, and assessment of disease phenotypes. Our protocol combines a number of innovative tools that include a codon-optimized mini intronic plasmid (CoMiP), chemically defined culture conditions to achieve high efficiencies of reprogramming and differentiation, and calcium imaging for assessment of cardiomyocyte phenotypes. Thus, this protocol provides a complete guide to use a patient cohort on a testable cardiomyocyte platform for pharmacological drug assessment.
View details for DOI 10.1007/7651_2015_196
View details for PubMedID 25690476