Introducing co-activation pattern metrics to quantify spontaneous brain network dynamics NEUROIMAGE Chen, J. E., Chang, C., Greicius, M. D., Glover, G. H. 2015; 111: 476-488

Abstract

Recently, fMRI researchers have begun to realize that the brain's intrinsic network patterns may undergo substantial changes during a single resting state (RS) scan. However, despite the growing interest in brain dynamics, metrics that can quantify the variability of network patterns are still quite limited. Here, we first introduce various quantification metrics based on the extension of co-activation pattern (CAP) analysis, a recently proposed point-process analysis that tracks state alternations at each individual time frame and relies on very few assumptions; then apply these proposed metrics to quantify changes of brain dynamics during a sustained 2-back working memory (WM) task compared to rest. We focus on the functional connectivity of two prominent RS networks, the default-mode network (DMN) and executive control network (ECN). We first demonstrate less variability of global Pearson correlations with respect to the two chosen networks using a sliding-window approach during WM task compared to rest; then we show that the macroscopic decrease in variations in correlations during a WM task is also well characterized by the combined effect of a reduced number of dominant CAPs, increased spatial consistency across CAPs, and increased fractional contributions of a few dominant CAPs. These CAP metrics may provide alternative and more straightforward quantitative means of characterizing brain network dynamics than time-windowed correlation analyses.

View details for DOI 10.1016/j.neuroimage.2015.01.057

View details for Web of Science ID 000352224100042

View details for PubMedID 25662866