Importance of mitral valve second-order chordae for left ventricular geometry, wall thickening mechanics, and global systolic function 40th Annual Meeting of the Society-of-Thoracic-Surgeons Rodriguez, F., Langer, F., Harrington, K. B., Tibayan, F. A., Zasio, M. K., Cheng, A., Liang, D., Daughters, G. T., Covell, J. W., Criscione, J. C., Ingels, N. B., Miller, D. C. LIPPINCOTT WILLIAMS & WILKINS. 2004: II115–II122


Mitral valvular-ventricular continuity is important for left ventricular (LV) systolic function, but the specific contributions of the anterior leaflet second-order "strut" chordae are unknown.Eight sheep had radiopaque markers implanted to silhouette the LV, annulus, and papillary muscles (PMs); 3 transmural bead columns were inserted into the mid-lateral wall between the PMs. The strut chordae were encircled with exteriorized wire snares. Three-dimensional marker images and hemodynamic data were acquired before and after chordal cutting. Preload recruitable stroke work (PRSW) and end-systolic elastance (E(es)) were calculated to assess global LV systolic function (n=7). Transmural strains were measured from bead displacements (n=4). Chordal cutting caused global LV dysfunction: E(es) (1.48+/-1.12 versus 0.98+/-1.30 mm Hg/mL, P=0.04) and PRSW (69+/-16 versus 60+/-15 mm Hg, P=0.03) decreased. Although heart rate and time from ED to ES were unchanged, time of mid-ejection was delayed (125+/-18 versus 136+/-19 ms, P=0.01). Globally, the LV apex and posterior PM tip were displaced away from the fibrous annulus and LV base-apex length increased at end-diastole and end-systole (all +1 mm, P<0.05). Locally, subendocardial end-diastolic strains occurred: Longitudinal strain (E22) 0.030+/-0.013 and radial thickening (E33) 0.081+/-0.041 (both P<0.05 versus zero). Subendocardial systolic shear strains were also perturbed: Circumferential-longitudinal "micro-torsion" (E12) (0.099+/-0.035 versus 0.075+/-0.025) and circumferential radial shear (E13) (0.084+/-0.023 versus 0.039+/-0.008, both P<0.05).Cutting second-order chords altered LV geometry, remodeled the myocardium between the PMs, perturbed local systolic strain patterns affecting micro-torsion and wall-thickening, and caused global systolic dysfunction, demonstrating the importance of these chordae for LV structure and function.

View details for DOI 10.1161/01.CIR.0000138580.57971.b4

View details for Web of Science ID 000224023600021

View details for PubMedID 15364849