New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Immune Mechanisms of Sublingual Immunotherapy
Immune Mechanisms of Sublingual Immunotherapy CURRENT ALLERGY AND ASTHMA REPORTS Jay, D. C., Nadeau, K. C. 2014; 14 (11)Abstract
Sublingual immunotherapy (SLIT) is a well-established allergen-specific immunotherapy and a safe and effective strategy to reorient inappropriate immune responses in allergic patients. SLIT takes advantage of the tolerogenic environment of the oral mucosa to promote tolerance to the allergen. Several clinical studies have investigated the complex interplay of innate and adaptive immune responses that SLIT exploits. The oral immune system is composed of tolerogenic dendritic cells that, following uptake of allergen during SLIT, support the differentiation of T helper cell type 1 (Th1) and the induction of IL-10-producing regulatory T cells. Following SLIT, allergic disease-promoting T helper cell type 2 (Th2) responses shift to a Th1 inflammatory response, and IL-10 and transforming growth factor (TGF)-ß production by regulatory T cells and tolerogenic dendritic cells suppress allergen-specific T cell responses. These immune changes occur both in the sublingual mucosa and in the periphery of a patient following SLIT. SLIT also promotes the synthesis of allergen-specific IgG and IgA antibodies that block allergen-IgE complex formation and binding to inflammatory cells, thus encouraging an anti-inflammatory environment. Several of these revealing findings have also paved the way for the identification of biomarkers of the clinical efficacy of SLIT. This review presents the emerging elucidation of the immune mechanisms mediated by SLIT.
View details for DOI 10.1007/s11882-014-0473-1
View details for Web of Science ID 000343644500004
View details for PubMedID 25195100