Whole-body glycolysis measured by the deuterated-glucose disposal test correlates highly with insulin resistance in vivo DIABETES CARE Beysen, C., Turner, H. C., Murphy, E. J., Awada, M., McLaughlin, T., Turner, S. M., Riiff, T., Reaven, G., Lamendola, C., Hellerstein, M. K. 2007; 30 (5): 1143-1149

Abstract

The purpose of this study was to compare an in vivo test of whole-body glycolysis, the deuterated-glucose disposal test (2H-GDT), with insulin sensitivity measured by the euglycemic-hyperinsulinemic glucose clamp and the steady-state plasma glucose (SSPG) test.The 2H-GDT consists of an oral glucose challenge containing deuterated glucose, followed by measurement of heavy water (2H2O) production, which represents whole-body glycolytic disposal of the glucose load. 2H2O production is corrected for ambient insulin concentration as an index of tissue insulin sensitivity. The 2H-GDT was compared with euglycemic-hyperinsulinemic glucose clamps in healthy lean subjects (n = 8) and subjects with the metabolic syndrome (n = 9) and with the SSPG test in overweight (n = 12) and obese (n = 6) subjects.A strong correlation with the clamp was observed for the 75-g and 30-g 2H-GDT (r = 0.95, P < 0.0001 and r = 0.88, P < 0.0001, respectively). The 2H-GDT and clamp studies revealed marked insulin resistance in subjects with metabolic syndrome compared with lean control subjects. The correlation with the clamp was maintained in each group (lean, r = 0.86, P < 0.01; metabolic syndrome, r = 0.81, P < 0.01) for the 75-g test. The 2H-GDT also correlated strongly with the SSPG test (r = -0.87, P < 0.0001) in overweight and obese subjects.The 2H-GDT, which measures whole-body glycolysis in humans in a quantitative manner, correlates highly with the euglycemic-hyperinsulinemic glucose clamp and the SSPG test. Impaired insulin-mediated whole-body glycolysis is a feature of insulin resistance, which provides a means of assessing insulin sensitivity in vivo.

View details for DOI 10.2337/dc06-1809

View details for Web of Science ID 000246291400019

View details for PubMedID 17259480