ROLE OF ADENOSINE IN CORONARY AUTOREGULATION AMERICAN JOURNAL OF PHYSIOLOGY Hanley, F. L., GRATTAN, M. T., Stevens, M. B., Hoffman, J. I. 1986; 250 (4): H558-H566

Abstract

The role of cardiac interstitial adenosine as an important metabolite in coronary autoregulation has not been established. We therefore measured steady-state cardiac interstitial adenosine concentration at a high and a low coronary inflow pressure using an epicardial diffusion well in anesthetized dogs. Although coronary resistance for the high and low pressure points showed highly significant differences (P less than 0.001), adenosine averaged 302 +/- 98 and 286 +/- 91 (SD) pmol/ml for the high and low pressure points, respectively (P greater than 0.20). Cardiac interstitial adenosine concentration was then measured with and without an intracoronary infusion of adenosine deaminase catalytic subunit. Adenosine averaged 28 +/- 21 (SD) pmol/ml during the infusion compared with 281 +/- 68 during control conditions (P less than 0.001). Finally, pressure-flow relations were obtained with and without the adenosine deaminase infusion, and there was no loss of autoregulation in the pressure of adenosine deaminase. These findings indicate that intracoronary adenosine deaminase markedly reduces interstitial adenosine concentration, that cardiac interstitial adenosine concentration remains constant during autoregulation, and that the coronary bed autoregulates normally when interstitial adenosine is reduced to levels close to zero. We conclude that cardiac interstitial adenosine concentration is not an important component in coronary autoregulation.

View details for Web of Science ID A1986A933300004

View details for PubMedID 3963213