A new ENU-induced allele of mouse quaking causes severe CNS dysmyelination MAMMALIAN GENOME Noveroske, J. K., Hardy, R., Dapper, J. D., Vogel, H., Justice, M. J. 2005; 16 (9): 672-682

Abstract

The mutant allelic series of the mouse quaking gene consists of the spontaneous quaking(viable) (qk(v)) allele, which is homozygous viable with a dysmyelination phenotype, and four ENU-induced alleles (qk(kt 1), qk(k2), qk(kt3/4), and qk(l-1)), which are homozygous embryonic lethal. Here we report the isolation of qk(e5), the first ENU-induced viable allele of quaking. Unlike qk(v)/qk(v), qk(e5)/qk(e5) animals have early-onset seizures, severe ataxia, and a dramatically reduced lifespan. Ultrastructural analysis of qk(e5)/qk(e5) brains reveals severe dysmyelination when compared with both wild-type and qk(v)/qk(v) brains. In addition, Calbindin detection in young adult qk(e5)/qk(e5) mice reveals Purkinje cell axonal swellings indicative of neurodegeneration , which is not seen in young adult qk(v)/qk(v) mice. Although the molecular defect in the qk(e5) allele is not evident by sequencing, protein expression studies show that qk(e5)/qk(e5) postnatal oligodendrocytes lack the QKI-6 and QKI-7 isoforms and have reduced QKI-5 levels. The oligodendrocyte developmental markers PDGF alpha R, NG 2, O4, CNP, and MBP are also present in the qk(e5)/qk(e5) postnatal brain although CNP and MBP levels are considerably reduced. Because the qk(v) allele is a large deletion that affects the expression of three genes, the new neurologic qk(e5) allele is an important addition to this allelic series.

View details for DOI 10.1007/s00335-005-0035-x

View details for Web of Science ID 000232303800003

View details for PubMedID 16245024