New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Robust Intratumor Partitioning to Identify High-Risk Subregions in Lung Cancer: A Pilot Study.
Robust Intratumor Partitioning to Identify High-Risk Subregions in Lung Cancer: A Pilot Study. International journal of radiation oncology, biology, physics Wu, J., Gensheimer, M. F., Dong, X., Rubin, D. L., Napel, S., Diehn, M., Loo, B. W., Li, R. 2016; 95 (5): 1504-1512Abstract
To develop an intratumor partitioning framework for identifying high-risk subregions from (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) and computed tomography (CT) imaging and to test whether tumor burden associated with the high-risk subregions is prognostic of outcomes in lung cancer.In this institutional review board-approved retrospective study, we analyzed the pretreatment FDG-PET and CT scans of 44 lung cancer patients treated with radiation therapy. A novel, intratumor partitioning method was developed, based on a 2-stage clustering process: first at the patient level, each tumor was over-segmented into many superpixels by k-means clustering of integrated PET and CT images; next, tumor subregions were identified by merging previously defined superpixels via population-level hierarchical clustering. The volume associated with each of the subregions was evaluated using Kaplan-Meier analysis regarding its prognostic capability in predicting overall survival (OS) and out-of-field progression (OFP).Three spatially distinct subregions were identified within each tumor that were highly robust to uncertainty in PET/CT co-registration. Among these, the volume of the most metabolically active and metabolically heterogeneous solid component of the tumor was predictive of OS and OFP on the entire cohort, with a concordance index or CI of 0.66-0.67. When restricting the analysis to patients with stage III disease (n=32), the same subregion achieved an even higher CI of 0.75 (hazard ratio 3.93, log-rank P=.002) for predicting OS, and a CI of 0.76 (hazard ratio 4.84, log-rank P=.002) for predicting OFP. In comparison, conventional imaging markers, including tumor volume, maximum standardized uptake value, and metabolic tumor volume using threshold of 50% standardized uptake value maximum, were not predictive of OS or OFP, with CI mostly below 0.60 (log-rank P>.05).We propose a robust intratumor partitioning method to identify clinically relevant, high-risk subregions in lung cancer. We envision that this approach will be applicable to identifying useful imaging biomarkers in many cancer types.
View details for DOI 10.1016/j.ijrobp.2016.03.018
View details for PubMedID 27212196