Predicting oropharyngeal tumor volume throughout the course of radiation therapy from pretreatment computed tomography data using general linear models MEDICAL PHYSICS Yock, A. D., Rao, A., Dong, L., Beadle, B. M., Garden, A. S., Kudchadker, R. J., Court, L. E. 2014; 41 (5)

Abstract

The purpose of this work was to develop and evaluate the accuracy of several predictive models of variation in tumor volume throughout the course of radiation therapy.Nineteen patients with oropharyngeal cancers were imaged daily with CT-on-rails for image-guided alignment per an institutional protocol. The daily volumes of 35 tumors in these 19 patients were determined and used to generate (1) a linear model in which tumor volume changed at a constant rate, (2) a general linear model that utilized the power fit relationship between the daily and initial tumor volumes, and (3) a functional general linear model that identified and exploited the primary modes of variation between time series describing the changing tumor volumes. Primary and nodal tumor volumes were examined separately. The accuracy of these models in predicting daily tumor volumes were compared with those of static and linear reference models using leave-one-out cross-validation.In predicting the daily volume of primary tumors, the general linear model and the functional general linear model were more accurate than the static reference model by 9.9% (range: -11.6%-23.8%) and 14.6% (range: -7.3%-27.5%), respectively, and were more accurate than the linear reference model by 14.2% (range: -6.8%-40.3%) and 13.1% (range: -1.5%-52.5%), respectively. In predicting the daily volume of nodal tumors, only the 14.4% (range: -11.1%-20.5%) improvement in accuracy of the functional general linear model compared to the static reference model was statistically significant.A general linear model and a functional general linear model trained on data from a small population of patients can predict the primary tumor volume throughout the course of radiation therapy with greater accuracy than standard reference models. These more accurate models may increase the prognostic value of information about the tumor garnered from pretreatment computed tomography images and facilitate improved treatment management.

View details for DOI 10.1118/1.4870437

View details for Web of Science ID 000336053100008

View details for PubMedID 24784371