Nonviral gene vector formation in monodispersed picolitre incubator for consistent gene delivery LAB ON A CHIP Hsieh, A. T., Hori, N., Massoudi, R., Pan, P. J., Sasaki, H., Lin, Y. A., Lee, A. P. 2009; 9 (18): 2638-2643

Abstract

A novel picolitre incubator based microfluidic system for consistent nonviral gene carrier formulation is presented. A cationic lipid-based carrier is the most attractive nonviral solution for delivering plasmid DNA, shRNA, or drugs for pharmaceutical research and RNAi applications. The size of the cationic lipid and DNA complex (CL-DNA), or the lipoplex, is one of the important variations for consistency of gene transfection. CL-DNA size, in turn, may be controlled by factors such as the cationic lipid and DNA mixing order, mixing rate, and mixture incubation time. The Picolitre Microfluidic Reactor and Incubator (PMRI) system described here is able to control these parameters in order to create homogeneous CL-DNA. Compared with conventional CL-DNA preparation techniques involving hand-shaking or vortexing, the PMRI system demonstrates a greater ability to constantly and uniformly mix cationic lipids and DNA simultaneously. After mixing in the picolitre droplet reactors, the cationic lipid and DNA is incubated within the picolitre incubator to form CL-DNA. The PMRI generates a narrower size distribution band, while also turning the sample loading, mixing and incubation steps into an integrated process enabling the consistent formation of CL-DNA. The coefficient of variation (CV) of transfection efficiency is 0.05 and 0.30 for PMRI-based and conventional methods, respectively. In addition, this paper demonstrates that the gene transfection efficiency of lipoplex created in the PMRI is more reproducible.

View details for DOI 10.1039/b823191e

View details for Web of Science ID 000269289600004

View details for PubMedID 19704978