Molecular imaging using labeled donor tissues reveals patterns of engraftment, rejection, and survival in transplantation TRANSPLANTATION Cao, Y. A., Bachmann, M. H., Beilhack, A., Yang, Y., Tanaka, M., Swijnenburg, R. J., Reeves, R., Taylor-Edwards, C., Schulz, S., Doyle, T. C., Fathman, C. G., Robbins, R. C., Herzenberg, L. A., Negrin, R. S., Contag, C. H. 2005; 80 (1): 134-139

Abstract

Tissue regeneration and transplantation of solid organs involve complex processes that can only be studied in the context of the living organism, and methods of analyzing these processes in vivo are essential for development of effective transplantation and regeneration procedures. We utilized in vivo bioluminescence imaging (BLI) to noninvasively visualize engraftment, survival, and rejection of transplanted tissues from a transgenic donor mouse that constitutively expresses luciferase. Dynamic early events of hematopoietic reconstitution were accessible and engraftment from as few as 200 transplanted whole bone marrow (BM) cells resulted in bioluminescent foci in lethally irradiated, syngeneic recipients. The transplantation of autologous pancreatic Langerhans islets and of allogeneic heart revealed the tempo of transplant degeneration or immune rejection over time. This imaging approach is sensitive and reproducible, permits study of the dynamic range of the entire process of transplantation, and will greatly enhance studies across various disciplines involving transplantation.

View details for DOI 10.1097/01.TP.0000164347.50559.A3

View details for Web of Science ID 000230473800023

View details for PubMedID 16003245