Modified High-Molecular-Weight Hyaluronan Promotes Allergen-Specific Immune Tolerance AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY Gebe, J. A., Yadava, K., Ruppert, S. M., Marshall, P., Hill, P., Falk, B. A., Sweere, J. M., Han, H., Kaber, G., Medina, C., Mikecz, K., Ziegler, S. F., Balaji, S., Keswani, S. G., Perez, V. A., Butte, M. J., Nadeau, K., Altemeier, W. A., Fanger, N., Bollyky, P. L. 2017; 56 (1): 109-120

Abstract

The extracellular matrix in asthmatic lungs contains abundant low-molecular-weight hyaluronan, and this is known to promote antigen presentation and allergic responses. Conversely, high-molecular-weight hyaluronan (HMW-HA), typical of uninflamed tissues, is known to suppress inflammation. We investigated whether HMW-HA can be adapted to promote tolerance to airway allergens. HMW-HA was thiolated to prevent its catabolism and was tethered to allergens via thiol linkages. This platform, which we call "XHA," delivers antigenic payloads in the context of antiinflammatory costimulation. Allergen/XHA was administered intranasally to mice that had been sensitized previously to these allergens. XHA prevents allergic airway inflammation in mice sensitized previously to either ovalbumin or cockroach proteins. Allergen/XHA treatment reduced inflammatory cell counts, airway hyperresponsiveness, allergen-specific IgE, and T helper type 2 cell cytokine production in comparison with allergen alone. These effects were allergen specific and IL-10 dependent. They were durable for weeks after the last challenge, providing a substantial advantage over the current desensitization protocols. Mechanistically, XHA promoted CD44-dependent inhibition of nuclear factor-?B signaling, diminished dendritic cell maturation, and reduced the induction of allergen-specific CD4 T-helper responses. XHA and other potential strategies that target CD44 are promising alternatives for the treatment of asthma and allergic sinusitis.

View details for DOI 10.1165/rcmb.2016-0111OC

View details for Web of Science ID 000392133000012

View details for PubMedCentralID PMC5248962