Modulation of excitation on parvalbumin interneurons by neuroligin-3 regulates the hippocampal network NATURE NEUROSCIENCE Polepalli, J. S., Wu, H., Goswami, D., Halpern, C. H., Sudhof, T. C., Malenka, R. C. 2017; 20 (2): 219-229


Hippocampal network activity is generated by a complex interplay between excitatory pyramidal cells and inhibitory interneurons. Although much is known about the molecular properties of excitatory synapses on pyramidal cells, comparatively little is known about excitatory synapses on interneurons. Here we show that conditional deletion of the postsynaptic cell adhesion molecule neuroligin-3 in parvalbumin interneurons causes a decrease in NMDA-receptor-mediated postsynaptic currents and an increase in presynaptic glutamate release probability by selectively impairing the inhibition of glutamate release by presynaptic Group III metabotropic glutamate receptors. As a result, the neuroligin-3 deletion altered network activity by reducing gamma oscillations and sharp wave ripples, changes associated with a decrease in extinction of contextual fear memories. These results demonstrate that neuroligin-3 specifies the properties of excitatory synapses on parvalbumin-containing interneurons by a retrograde trans-synaptic mechanism and suggest a molecular pathway whereby neuroligin-3 mutations contribute to neuropsychiatric disorders.

View details for DOI 10.1038/nn.4471

View details for Web of Science ID 000393271000016

View details for PubMedID 28067903

View details for PubMedCentralID PMC5272845