Mnemonic Training Reshapes Brain Networks to Support Superior Memory NEURON Dresler, M., Shirer, W. R., Konrad, B. N., Mueller, N. C., Wagner, I. C., Fernandez, G., Czisch, M., Greicius, M. D. 2017; 93 (5): 1227-?


Memory skills strongly differ across the general population; however, little is known about the brain characteristics supporting superior memory performance. Here we assess functional brain network organization of 23 of the world's most successful memory athletes and matched controls with fMRI during both task-free resting state baseline and active memory encoding. We demonstrate that, in a group of naive controls, functional connectivity changes induced by 6 weeks of mnemonic training were correlated with the network organization that distinguishes athletes from controls. During rest, this effect was mainly driven by connections between rather than within the visual, medial temporal lobe and default mode networks, whereas during task it was driven by connectivity within these networks. Similarity with memory athlete connectivity patterns predicted memory improvements up to 4 months after training. In conclusion, mnemonic training drives distributed rather than regional changes, reorganizing the brain's functional network organization to enable superior memory performance.

View details for DOI 10.1016/j.neuron.2017.02.003

View details for Web of Science ID 000396429800022

View details for PubMedID 28279356