Intestinal Enteroendocrine Lineage Cells Possess Homeostatic and Injury-Inducible Stem Cell Activity Cell Stem Cell Yan, K., Gevaert, O., Zheng, G., Anchang, B., Probert, C., et al 2017; 21 (1): 78 - 90.e6

Abstract

Several cell populations have been reported to possess intestinal stem cell (ISC) activity during homeostasis and injury-induced regeneration. Here, we explored inter-relationships between putative mouse ISC populations by comparative RNA-sequencing (RNA-seq). The transcriptomes of multiple cycling ISC populations closely resembled Lgr5+ISCs, the most well-defined ISC pool, but Bmi1-GFP+cells were distinct and enriched for enteroendocrine (EE) markers, including Prox1. Prox1-GFP+cells exhibited sustained clonogenic growth in vitro, and lineage-tracing of Prox1+cells revealed long-lived clones during homeostasis and after radiation-induced injury in vivo. Single-cell mRNA-seq revealed two subsets of Prox1-GFP+cells, one of which resembled mature EE cells while the other displayed low-level EE gene expression but co-expressed tuft cell markers, Lgr5 and Ascl2, reminiscent of label-retaining secretory progenitors. Our data suggest that the EE lineage, including mature EE cells, comprises a reservoir of homeostatic and injury-inducible ISCs, extending our understanding of cellular plasticity and stemness.

View details for DOI 10.1016/j.stem.2017.06.014

View details for PubMedCentralID PMC5642297