Thy1-Targeted Microbubbles for Ultrasound Molecular Imaging of Pancreatic Ductal Adenocarcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research Abou-Elkacem, L., Wang, H., Chowdhury, S. M., Kimura, R. H., Bachawal, S. V., Gambhir, S. S., Tian, L., Willmann, J. K. 2018

Abstract

To engineer a dual human and murine Thy1-binding single-chain-antibody ligand (Thy1-scFv) for contrast microbubble-enhanced ultrasound molecular imaging of pancreatic ductal adenocarcinoma (PDAC). Thy1-scFv were engineered using yeast-surface-display techniques. Binding to soluble human and murine Thy1 and to Thy1-expressing cells was assessed by flow cytometry. Thy1-scFv was then attached to gas-filled microbubbles to create MB Thy1-scFv. Thy1 binding of MB Thy1-scFv to Thy1-expressing cells was evaluated under flow shear stress conditions in flow-chamber experiments. MB scFv-scrambled and MB Non-targeted were used as negative controls. All microbubble types were tested in both orthotopic human PDAC xenografts and transgenic PDAC mice in vivo. Results: Thy1-scFv had a K D of 3.4±0.36 nM for human and 9.2±1.7 nM for murine Thy1 and showed binding to both soluble and cellularly expressed Thy1. MB Thy1-scFv attached to Thy1 with high affinity compared to negative control microbubbles P<0.01) as assessed by flow cytometry. Similarly, flow-chamber studies showed significantly (P<0.01) higher binding of MB Thy1-scFv (3.0±0.81 MB/cell) to Thy1-expressing cells than MB scFv-scrambled (0.57±0.53) and MB Non-targeted (0.43±0.53). In vivo ultrasound molecular imaging using MB Thy1-scFv demonstrated significantly higher signal (P<0.01) in both orthotopic (5.32±1.59 a.u.) and transgenic PDAC (5.68±2.5 a.u.) mice compared to chronic pancreatitis (0.84±0.6 a.u.) and normal pancreas (0.67±0.71 a.u.). Ex vivo immunofluorescence confirmed significantly (P<0.01) increased Thy1 expression in PDAC compared to chronic pancreatitis and normal pancreas tissue. Conclusions: A dual human and murine Thy1-binding scFv was designed to generate contrast microbubbles to allow PDAC detection with ultrasound.

View details for DOI 10.1158/1078-0432.CCR-17-2057

View details for PubMedID 29301827