Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite SCIENCE Platten, M., Ho, P. P., Youssef, S., Fontoura, P., Garren, H., Hur, E. M., Gupta, R., Lee, L. Y., Kidd, B. A., Robinson, W. H., Sobel, R. A., Selley, M. L., Steinman, L. 2005; 310 (5749): 850-855

Abstract

Local catabolism of the amino acid tryptophan (Trp) by indoleamine 2,3-dioxygenase (IDO) is considered an important mechanism of regulating T cell immunity. We show that IDO transcription was increased when myelin-specific T cells were stimulated with tolerogenic altered self-peptides. Catabolites of Trp suppressed proliferation of myelin-specific T cells and inhibited production of proinflammatory T helper-1 (T(H)1) cytokines. N-(3,4,-Dimethoxycinnamoyl) anthranilic acid (3,4-DAA), an orally active synthetic derivative of the Trp metabolite anthranilic acid, reversed paralysis in mice with experimental autoimmune encephalomyelitis, a model of multiple sclerosis (MS). Trp catabolites and their derivatives offer a new strategy for treating T(H)1-mediated autoimmune diseases such as MS.

View details for DOI 10.1126/science.1117634

View details for PubMedID 16272121