TSPO-PET Imaging Using [18F]PBR06 is a Potential Translatable Biomarker for Treatment Response in Huntington's Disease: Preclinical Evidence with the p75NTR Ligand LM11A-31. Human molecular genetics Simmons, D. A., James, M. L., Belichenko, N. P., Semaan, S., Condon, C., Kuan, J., Shuhendler, A. J., Miao, Z., Chin, F. T., Longo, F. M. 2018


Huntington's Disease (HD) is an inherited neurodegenerative disorder that has no cure. HD therapeutic development would benefit from a non-invasive translatable biomarker to track disease progression and treatment response. A potential biomarker is using positron emission tomography (PET) imaging with a translocator protein 18kDa (TSPO) radiotracer to detect microglial activation, a key contributor to HD pathogenesis. The ability of TSPO-PET to identify microglial activation in HD mouse models, essential for a translatable biomarker, or therapeutic efficacy in HD patients or mice is unknown. Thus, this study assessed the feasibility of utilizing PET imaging with the TSPO tracer, [18F]PBR06, to detect activated microglia in multiple HD mouse models and to monitor response to treatment with LM11A-31, a p75NTR ligand known to reduce neuroinflammation in HD mice. [18F]PBR06-PET detected microglial activation in striatum, cortex and hippocampus of vehicle-treated R6/2 mice at a late disease stage and, notably, also in early and mid-stage symptomatic BACHD mice. After oral administration of LM11A-31 to R6/2 and BACHD mice, [18F]PBR06-PET discerned the reductive effects of LM11A-31 on neuroinflammation in both HD mouse models. [18F]PBR06-PET signal had a spatial distribution similar to ex vivo brain autoradiography and correlated with microglial activation markers: increased IBA-1 and TSPO immunostaining/blotting and striatal levels of cytokines IL-6 and TNFalpha. These results suggest [18F]PBR06-PET as a surrogate marker of therapeutic efficacy in HD mice with high potential as a translatable biomarker for preclinical and clinical HD trials.

View details for PubMedID 29860333