Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis NATURE GENETICS Gong, Y. Q., Krakow, D., Marcelino, J., Wilkin, D., Chitayat, D., Babul-Hirji, R., Hudgins, L., Cremers, C. W., Cremers, F. P., Brunner, H. G., Reinker, K., Rimoin, D. L., Cohn, D. H., Goodman, F. R., Reardon, W., Patton, M., Francomano, C. A., Warman, M. L. 1999; 21 (3): 302-304

Abstract

The secreted polypeptide noggin (encoded by the Nog gene) binds and inactivates members of the transforming growth factor beta superfamily of signalling proteins (TGFbeta-FMs), such as BMP4 (ref. 1). By diffusing through extracellular matrices more efficiently than TGFbeta-FMs, noggin may have a principal role in creating morphogenic gradients. During mouse embryogenesis, Nog is expressed at multiple sites, including developing bones. Nog-/- mice die at birth from multiple defects that include bony fusion of the appendicular skeleton. We have identified five dominant human NOG mutations in unrelated families segregating proximal symphalangism (SYM1; OMIM 185800) and a de novo mutation in a patient with unaffected parents. We also found a dominant NOG mutation in a family segregating multiple synostoses syndrome (SYNS1; OMIM 186500); both SYM1 and SYNS1 have multiple joint fusion as their principal feature. All seven NOG mutations alter evolutionarily conserved amino acid residues. The findings reported here confirm that NOG is essential for joint formation and suggest that NOG requirements during skeletogenesis differ between species and between specific skeletal elements within species.

View details for Web of Science ID 000078977900025

View details for PubMedID 10080184