Evidence of a role for functional heterogeneity in multidrug resistance transporters in clinical trials of P-glycoprotein modulation in acute myeloid leukemia. Cytometry. Part B, Clinical cytometry Marcelletti, J. F., Sikic, B. I., Cripe, L. D., Paietta, E. 2018

Abstract

BACKGROUND: Multidrug resistance (MDR) transporter proteins such as P-glycoprotein (P-gp) efflux a variety of chemotherapeutic drugs from acute myeloid leukemia (AML) blasts leading to clinical drug resistance.METHODS: This study examined heterogeneity of MDR functional efflux by AML blasts using two flow cytometry bioassays. Bone marrow specimens (N = 50) from elderly patients with newly diagnosed AML were analyzed for CD34+ blasts with MDR efflux function. Efflux was measured with a fluorescent dye (DiOC2 ) as a surrogate for oncology drugs that are substrates for MDR efflux. P-gp-mediated efflux was differentiated from non-P-gp MDR activities using zosuquidar, a highly selective P-gp modulator. The bioassays included a zosuquidar-dependent DiOC2 accumulation bioassay that measured only P-gp. The second method, termed the efflux bioassay, could detect P-gp and other non-P-gp efflux depending on bioassay culture conditions.RESULTS: Sixty-two percent of the specimens were considered positive for blasts with P-gp function, and 26% of such P-gp-positive specimens also exhibited zosuquidar-resistant (i.e., non-P-gp) MDR efflux activity; 37% of P-gp-negative AML blast specimens displayed zosuquidar-resistant MDR function in the efflux bioassay.CONCLUSIONS: These results confirm the heterogeneous nature of MDR efflux pumps in AML blasts, and provide support for the hypothesis that non-P-gp MDR contributed to negative results with zosuquidar in AML trials like ECOG-ACRIN E3999.

View details for PubMedID 30334334