Calcium-dependent upregulation of E4BP4 expression correlates with glucocorticoid-evoked apoptosis of human leukemic CEM cells BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS Priceman, S. J., Kirzner, J. D., Nary, L. J., Morris, D., Shankar, D. B., Sakamoto, K. M., Medh, R. D. 2006; 344 (2): 491-499

Abstract

Glucocorticoid (GC)-evoked apoptosis of T-lymphoid cells is preceded by increases in the intracellular Ca2+ concentration ([Ca2+]i), which may contribute to apoptosis. This report demonstrates that GC-mediated upregulation of the bZIP transcriptional repressor gene, E4BP4, is dependent on [Ca2+]i levels, and correlates with GC-evoked apoptosis of GC-sensitive CEM-C7-14 cells. Calcium chelators EGTA and BAPTA reduced [Ca2+]i levels and protected CEM-C7-14 cells from Dex-evoked E4BP4 upregulation as well as apoptosis. In the GC-resistant sister clone, CEM-C1-15, Dex treatment did not induce [Ca2+]i levels, E4BP4 expression or apoptosis, however, the calcium ionophore A23187 restored Dex-evoked E4BP4 upregulation and apoptosis. CEM-C7-14 cells were more sensitive to GC-independent increases in [Ca2+]i levels by thapsigargin, and a corresponding increase in E4BP4 expression and cell death, compared to CEM-C1-15 cells, suggesting a direct correlation between [Ca2+]i levels, E4BP4 expression, and apoptosis.

View details for DOI 10.1016/j.bbrc.2006.03.169

View details for Web of Science ID 000237410000006

View details for PubMedID 16630563