Human Induced Pluripotent Stem Cell Model of Trastuzumab-Induced Cardiac Dysfunction in Breast Cancer Patients. Circulation Kitani, T., Ong, S. G., Lam, C. K., Rhee, J. W., Zhang, J. Z., Oikonomopoulos, A., Ma, N., Tian, L., Lee, J., Telli, M. L., Witteles, R. M., Sharma, A., Sayed, N., Wu, J. C. 2019

Abstract

Molecular targeted chemotherapies have been shown to significantly improve cancer patient outcomes, but often cause cardiovascular side effects that limit their use and impair patients' quality of life. Cardiac dysfunction induced by these therapies, especially trastuzumab, shows a distinct cardiotoxic clinical phenotype compared to cardiotoxicity induced by conventional chemotherapies.We employed the human induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) platform to determine the underlying cellular mechanisms in trastuzumab-induced cardiac dysfunction. We assessed the effects of trastuzumab on structural and functional properties in iPSC-CMs from healthy individuals and performed RNA-sequencing (RNA-seq) to further examine the effect of trastuzumab on iPSC-CMs. We also generated iPSCs from patients receiving trastuzumab and examined whether patients' phenotype could be recapitulated in vitro using patient-specific iPSC-CMs.We found that clinically relevant doses of trastuzumab significantly impaired the contractile and calcium handling properties of iPSC-CMs without inducing cardiomyocyte death or sarcomeric disorganization. RNA-seq and subsequent functional analysis revealed mitochondrial dysfunction and altered cardiac energy metabolism pathway as primary causes of trastuzumab-induced cardiotoxic phenotype. Human iPSC-CMs generated from patients who received trastuzumab and experienced severe cardiac dysfunction were more vulnerable to trastuzumab treatment, compared to iPSC-CMs generated from patients who did not experience cardiac dysfunction following trastuzumab therapy. Importantly, metabolic modulation with AMPK activators could avert the adverse effects induced by trastuzumab.Our results indicate that alterations in cellular metabolic pathways in cardiomyocytes could be a key mechanism underlying the development of cardiac dysfunction following trastuzumab therapy; therefore, targeting the altered metabolism may be a promising therapeutic approach for trastuzumab-induced cardiac dysfunction.

View details for PubMedID 30866650