Automated geographic atrophy segmentation for SD-OCT images using region-based C-V model via local similarity factor. Biomedical optics express Niu, S. n., de Sisternes, L. n., Chen, Q. n., Leng, T. n., Rubin, D. L. 2016; 7 (2): 581–600

Abstract

Age-related macular degeneration (AMD) is the leading cause of blindness among elderly individuals. Geographic atrophy (GA) is a phenotypic manifestation of the advanced stages of non-exudative AMD. Determination of GA extent in SD-OCT scans allows the quantification of GA-related features, such as radius or area, which could be of important value to monitor AMD progression and possibly identify regions of future GA involvement. The purpose of this work is to develop an automated algorithm to segment GA regions in SD-OCT images. An en face GA fundus image is generated by averaging the axial intensity within an automatically detected sub-volume of the three dimensional SD-OCT data, where an initial coarse GA region is estimated by an iterative threshold segmentation method and an intensity profile set, and subsequently refined by a region-based Chan-Vese model with a local similarity factor. Two image data sets, consisting on 55 SD-OCT scans from twelve eyes in eight patients with GA and 56 SD-OCT scans from 56 eyes in 56 patients with GA, respectively, were utilized to quantitatively evaluate the automated segmentation algorithm. We compared results obtained by the proposed algorithm, manual segmentation by graders, a previously proposed method, and experimental commercial software. When compared to a manually determined gold standard, our algorithm presented a mean overlap ratio (OR) of 81.86% and 70% for the first and second data sets, respectively, while the previously proposed method OR was 72.60% and 65.88% for the first and second data sets, respectively, and the experimental commercial software OR was 62.40% for the second data set.

View details for PubMedID 26977364