Modulation of epileptiform activity by glutamine and system A transport in a model of post-traumatic epilepsy NEUROBIOLOGY OF DISEASE Tani, H., Bandrowski, A. E., Parada, I., Wynn, M., Huguenard, J. R., Prince, D. A., Reimer, R. J. 2007; 25 (2): 230-238

Abstract

Epileptic activity arises from an imbalance in excitatory and inhibitory synaptic transmission. To determine if alterations in the metabolism of glutamate, the primary excitatory neurotransmitter, might contribute to epilepsy we directly and indirectly modified levels of glutamine, an immediate precursor of synaptically released glutamate, in the rat neocortical undercut model of hyperexcitability and epilepsy. We show that slices from injured cortex take up glutamine more readily than control slices, and an increased expression of the system A transporters SNAT1 and SNAT2 likely underlies this difference. We also examined the effect of exogenous glutamine on evoked and spontaneous activity and found that addition of physiological concentrations of glutamine to perfusate of slices isolated from injured cortex increased the incidence and decreased the refractory period of epileptiform potentials. By contrast, exogenous glutamine increased the amplitude of evoked potentials in normal cortex, but did not induce epileptiform potentials. Addition of physiological concentrations of glutamine to perfusate of slices isolated from injured cortex greatly increased abnormal spontaneous activity in the form of events resembling spreading depression, again while having no effect on slices from normal cortex. Interestingly, similar spreading depression like events were noted in control slices at supraphysiological levels of glutamine. In the undercut cortex addition of methylaminoisobutyric acid (MeAIB), an inhibitor of the system A glutamine transporters attenuated all physiological effects of added glutamine suggesting that uptake through these transporters is required for the effect of glutamine. Our findings support a role for glutamine transport through SNAT1 and/or SNAT2 in the maintenance of abnormal activity in this in vitro model of epileptogenesis and suggest that system A transport and glutamine metabolism are potential targets for pharmacological intervention in seizures and epilepsy.

View details for DOI 10.1016/j.nbd.2006.08.025

View details for Web of Science ID 000243981400002

View details for PubMedID 17070687

View details for PubMedCentralID PMC1952182