New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Indirect magnetic resonance lymphangiography to assess lymphatic function in experimental murine lymphedema.
Indirect magnetic resonance lymphangiography to assess lymphatic function in experimental murine lymphedema. Lymphatic research and biology Pan, D., Suzuki, Y., Yang, P. C., Rockson, S. G. 2006; 4 (4): 211-216Abstract
Recently, indirect magnetic resonance lymphangiography with gadolinium (Gd) has been demonstrated to offer the potential for safe, high-resolution visualization of the lymphatic vessels, in addition to the lymph nodes. In this study, the potential utility of indirect Gd contrast magnetic resonance imaging of lymphatic vascular function was investigated in the murine tail. Functional imaging of healthy mice is contrasted with the findings in experimentally-induced lymphatic vascular insufficiency.Postsurgical lymphedema was experimentally created in the murine tail. Normal and lymphedematous mouse tails were imaged following direct subcutaneous administration of Gadolinium-DTPA, 0.1 mmol/kg. Images were obtained in axial and coronal planes with a T1-weighted spin echo inversion-recovery sequence.In the normal tail, both of the bilateral major collecting lymphatics were clearly visualized as the Gd tracer was cleared from the interstitial compartment. In contrast, the Gd tracer accumulated at the prior surgical site in the lymphedematous tail. Quantitative assessment of Gd clearance demonstrates that accumulation of Gd correlates with the impedance to lymph flow proximal to the site of surgical lymphatic ablation.Magnetic resonance is a feasible and reliable method to be applied to quantitative functional imaging of the lymphatic vasculature in experimental models of lymphedema.
View details for PubMedID 17394404