Enhanced 4D cone-beam CT with inter-phase motion model MEDICAL PHYSICS Li, T., Koong, A., Xing, L. 2007; 34 (9): 3688-3695

Abstract

Four-dimensional (4D) cone-beam CT (CBCT) is commonly obtained by respiratory phase binning of the projections, followed by independent reconstructions of the rebinned data in each phase bin. Due to the significantly reduced number of projections per reconstruction, the quality of the 4DCBCT images is often degraded by view-aliasing artifacts easily seen in the axial view. Acquisitions using multiple gantry rotations or slow gantry rotation can increase the number of projections and substantially improve the 4D images. However, the extra cost of the scan time may set fundamental limits to their applications in clinics. Improving the trade-off between image quality and scan time is the key to making 4D onboard imaging practical and more useful. In this article, we present a novel technique toward high-quality 4DCBCT imaging without prolonging the acquisition time, referred to as the "enhanced 4DCBCT". The method correlates the data in different phase bins and integrates the internal motion into the 4DCBCT image formulation. Several strategies of the motion derivation are discussed, and the resultant images are assessed with numerical simulations as well as a clinical case.

View details for DOI 10.1118/1.2767144

View details for Web of Science ID 000249547200031

View details for PubMedID 17926972