FasL shedding is reduced by hypothermia in experimental stroke JOURNAL OF NEUROCHEMISTRY Liu, L., Kim, J. Y., Koike, M. A., Yoon, Y. J., Tang, X. N., Ma, H., Lee, H., Steinberg, G. K., Lee, J. E., Yenari, M. A. 2008; 106 (2): 541-550

Abstract

Protection by mild hypothermia has previously been associated with better mitochondrial preservation and suppression of the intrinsic apoptotic pathway. It is also known that the brain may undergo apoptotic death via extrinsic, or receptor-mediated pathways, such as that triggered by Fas/FasL. Male Sprague-Dawley rats subjected to 2 h middle cerebral artery occlusion with 2 h intraischemic mild hypothermia (33 degrees C) were assayed for Fas, FasL and caspase-8 expression. Ischemia increased Fas, but decreased FasL by approximately 50-60% at 6 and 24 h post-insult. Mild hypothermia significantly reduced expression of Fas and processed caspase-8 both by approximately 50%, but prevented ischemia-induced FasL decreases. Fractionation revealed that soluble/shed FasL (sFasL) was decreased by hypothermia, while membrane-bound FasL (mFasL) increased. To more directly assess the significance of the Fas/FasL pathway in ischemic stroke, primary neuron cultures were exposed to oxygen glucose deprivation. Since FasL is cleaved by matrix metalloproteinases (MMPs), and mild hypothermia decreases MMP expression, treatment with a pan-MMP inhibitor also decreased sFasL. Thus, mild hypothermia is associated with reduced Fas expression and caspase-8 activation. Hypothermia prevented total FasL decreases, and most of it remained membrane-bound. These findings reveal new observations regarding the effect of mild hypothermia on the Fas/FasL and MMP systems.

View details for DOI 10.1111/j.1471-4159.2008.05411.x

View details for Web of Science ID 000257708000005

View details for PubMedID 18410517

View details for PubMedCentralID PMC2735469